13 resultados para Sucrose

em Universidade Federal do Rio Grande do Norte(UFRN)


Relevância:

10.00% 10.00%

Publicador:

Resumo:

SILVA, Fatima C. B. L. et al. Digestive enzymes during development of Ceratitis capitata (Diptera:Tephritidae) and effects of SBTI on its digestive serine proteinase targets. Insect Biochemistry and Molecular Biology, v. 36, p. 561-569, 2006.ISSN: 0965-1748.DOI: 10.1016/j.ibmb.2006.04.004.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The mobilization of food reserves in storage tissues and allocation of their hydrolysis products in the growing axis are critical processes for the establishment of seedlings after germination. Therefore, it is crucial for mobilization of reserves to be synchronized with the growing axis, so that photosynthetic activity can be started before depletion of reserves. For this, integrative approaches involving different reserves, different hydrolysis products and interaction between storage and growing axis tissues, either through hormones or metabolites with signaling role, can contribute greatly to the elucidation of the regulation mechanisms for reserve mobilization. In this study, was hypothesized that hormones and metabolites have different actions on reserve mobilization, and there must be a crossed effect of sugars on the mobilization of proteins and amino acids on lipids and starch mobilization in sunflower seedlings. This study was conducted with seeds of sunflower (Helianthus annuus L.) hybrid Helio 253 using in vitro culture system. Seeds were germinated on Germitest® paper and grown on agar-water 4 g/L without addition of nutrients during 9 days after imbibition (DAI) for growth curve. To verify the effect of metabolites and hormones, seedlings were transferred in the 2nd DAI to agar-water 4 g/L supplemented with increasing concentrations of sucrose or L-glutamine, abscisic acid, gibberellic acid or indolebutyric acid. The results of this study confirm that the mobilization of lipids and storage proteins occurs in a coordinated manner during post-germination growth in sunflower, corroborating the hypothesis that the application of external carbon (sucrose) and nitrogen (L-glutamine) sources can delay the mobilization of these reserves in a crossed way. Moreover, considering the changes in the patterns of reserve mobilization and partition of their products in seedlings treated with different growth regulators, it is evident that the effects of metabolites and hormones must involve, at least in part, distinct mechanisms of action

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sugarcane (Saccharum spp.) is a plant from Poaceae family that has an impressive ability to accumulate sucrose in the stalk, making it a significant component of the economy of many countries. About 100 countries produce sugarcane in an area of 22 million hectares worldwide. For this reason, many studies have been done using sugarcane as a plant model in order to improve production. A change in gravity may be one kind of abiotic stress, since it generates rapid responses after stimulation. In this work we decided to investigate the possible morphophysiological, biochemical and molecular changes resulting from microgravity. Here, we present the contributions of an experiment where sugarcane plants were submitted to microgravity flight using a vehicle VSB-30, a sounding rocket developed by Aeronautics and Space Institute teams, in cooperation with the German Space Agency. Sugarcane plants with 10 days older were submitted to a period of six minutes of microgravity using the VSB-30 rocket. The morphophysiological analyses of roots and leaves showed that plants submitted to the flight showed changes in the conduction tissues, irregular pattern of arrangement of vascular bundles and thickening of the cell walls, among other anatomical changes that indicate that the morphology of the plants was substantially influenced by gravitational stimulation, besides the accumulation of hydrogen peroxide, an important signaling molecule in stress conditions. We carried out RNA extraction and sequencing using Illumina platform. Plants subjected to microgravity also showed changes in enzyme activity. It was observed an increased in superoxide dismutase activity in leaves and a decreased in its activity in roots as well as for ascorbate peroxidase activity. Thus, it was concluded that the changes in gravity were perceived by plants, and that microgravity environment triggered changes associated with a reactive oxygen specie signaling process. This work has helped the understanding of how the gravity affects the structural organization of the plants, by comparing the anatomy of plants subjected to microgravity and plants grown in 1g gravity

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sugar esters are substances which possess surfactant, antifungical and bactericidal actions and can be obtained through two renewable sources of raw materials: sugars and vegetable oils. Their excellent biodegradability, allied to lhe fact that they are non toxic, insipid, inodorous, biocompatible, no-ionic, digestible and because they can resist to adverse conditions of temperature, pH and salinity, explain lhe crescent use of these substances in several sections of lhe industry. The objective of this thesis was to synthesize and characterize surfactants and polymers containing sugar branched in their structures, through enzymatic transesterification of vinyl esters and sugars, using alkaline protease from Bacillus subtilis as catalyst, in organic medium (DMF).Three types of sugars were used: L-arabinose, D-glucose and sucrose and two types of vinyl esters: vinyl laurate and vinyl adipate. Aiming to reach high conversions from substrates to products for a possible future large scale industrial production, a serie of variables was optimized, through Design of Experiments (DOE), using Response Surface Methodology (RSM).The investigated variables were: (1) enzyme concentration; (2) molar reason of substrates; (3) water/solvent rale; (4) temperature and (5) time. We obtained six distinct sugar esters: 5-0-lauroyl L-arabinose, 6-0-lauroyl D-glucose, 1'-O-lauroyl sucrose, 5-0-vinyladipoyl L-arabinose, 6-0-vinyladipoyl D-glucose and 1 '-O-vinyladipoyl sucrose, being lhe last three polymerizable. The progress of lhe reaction was monitored by HPLC analysis, through lhe decrease of sugar concentration in comparison to lhe blank. Qualitative analysis by TLC confirmed lhe formation of lhe products. In lhe purification step, two methodologies were adopted: (1) chromatographic column and (2) extraction with hot acetone. The acylation position and lhe chemical structure were determined by 13C-RMN. The polymerization of lhe three vinyl sugar esters was possible, through chemical catalysis, using H2O2 and K2S2O8 as initiators, at 60°C, for 24 hours. IR spectra of lhe monomers and respective polymers were compared revealing lhe disappearance of lhe vinyl group in lhe polymer spectra. The molar weights of lhe polymers were determined by GPC and presented lhe following results: poly (5-0-vinyladipoyl L-arabinose): Mw = 7.2 X 104; PD = 2.48; poly (6-0-vinyladipoyl D-glucose): Mw = 2.7 X 103; PD = 1.75 and poly (1'-O-vinyladipoyl sucrose): Mw = 4.2 X 104; PD = 6.57. The six sugar esters were submitted to superficial tension tests for determination of the critical micelle concentrations (CMC), which varied from 122 to 167 ppm. Finally, a study of applicability of these sugar esters, as lubricants for completion fluids of petroleum wells was' accomplished through comparative analysis of lhe efficiency of these sugar esters, in relation to three commercial lubricants. The products synthesized in this thesis presented equivalent or superior action to lhe tested commercial products

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A galactose and sucrose specific lectin from the marine sponge Cliona varians named CvL was purified by acetone fractionation followed by Sepharose CL 4B affinity chromatography. Models of leukocyte migration in vivo were used to study the inflammatory activity of CvL through of mouse paw oedema and peritonitis. Effect of CvL on peritoneal macrophage activation was analyzed. Effects of corticoids and NSAIDS drugs were also evaluated on peritonitis stimulated by CvL. Results showed that mouse hind-paw oedema induced by sub plantar injections of CvL was dependent dose until 50µg/paw. This CvL dose when administered into mouse peritoneal cavities induced maxima cell migration (9283 cells/µL) at 24 hours after injection. This effect was preferentially inhibited by incubation of CvL with the carbohydrates D-galactose followed by sucrose. Pre-treatment of mice with 3% thioglycolate increases the peritoneal macrophage population 2.3 times, and enhanced the neutrophil migration after 24h CvL injection (75.8%, p<0.001) and no significant effect was observed in presence of fMLP. Finally, Pre-treatment of mice with dexamethason (cytokine antagonist) decreased 65.6%, (p<0.001), with diclofenac (non-selective NSAID) decreased 34.5%, (p<0.001) and Celecoxib (selective NSAID) had no effect on leukocyte migration after submission at peritonitis stimulated by CvL, respectively. Summarizing, data suggest that CvL shows pro-inflammatory activity, inducing neutrophil migration probably by pathway on resident macrophage activation and on chemotaxis mediated by cytokines

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Vegetables drying plays an important role in the field of food dehydration, being a very old practice that was originated from sun drying items of food in order to preserve them to be consumed during the periods of scarcity. One of these vegetables is the tomato, that was originally grown in South America. Tomatoes are easily perishable after being picked up from the tree and this makes the process of tomato dehydration a challenge due to the high amount of water (95%) contained in them. The present research work was mainly intended to develop alternative processes for tomato conservation, by drying slices of skinned and unskinned tomatoes in the in natura form or in the osmotically pre-dehydrated form. Firstly, the best conditions of the osmotic pre-dehydration process were defined including temperature, immersion time and concentration of the osmotic solution, based on the results of water loss, solids gain and weigh reduction of the pre-dehydration tomatoes at different processing conditions. The osmotic solution used was made up of NaCl (5 and 10%) and sucrose (25 and 35%) at different combinations. For a fixed conditions of osmotic pre-dehydration, the drying tests of the pre-processed and in natura tomatoes were carried out in a stove with air circulation and a convective dryer with trays, at two levels of temperature. The sensorial analysis of the osmotically pre-treated and unskinned dehydrated tomatoes was carried out as well as a study on the their shelf-live. The results obtained showed that the drying of the tomatoes took place as a result of the internal control of the water transport, and did not show a constant rate, while two distinct periods of the decreasing phase were observed. The osmotic pre treatment substancially reduced the initial amount of humidity in the tomatoes, thus reducing the necessary time for the product to attain levels of intermediate humidity. The impermeability of the tomato skin was identified as well as the unfavorable influence of the pre-treatment on the unskinned tomatoes, whose solid gain brought about a decrease in the water activity with subsequent reduction of the drying rate. Despite the various simplifications carried out during the development of this study, the proposed diffusive model adjusted to the experimental data satisfactorily, thus making it possible to determine the effective coefficients of diffusion, whose results were consistent and compatible with those found in the current literature. Concerning the higher rates of evaporation and the lowest processing time, the best results were obtained in the drying of the unskinned, in natura tomatoes and of the skinned, pre-dehydrated tomatoes, at 60ºC, both processed in the convective drier. The results of the sensorial analysis of the unskinned and pre-treated product did not prove to be satisfactory. Regarding the shelf-live of the tomatoes, for a period of 45 days, no physicochemical or microbiological alteration of the product was noted

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the area of food dehydration, drying of vegetables has a very representative position, it has the objective to preserve the surplus of crops and began with sun drying. Among the vegetable is the carrot, which had its origin in Southeast Asia and in Brazil is a vegetable cultivated enough. The principal objective of this works is to find alternative ways for the conservation of carrot slices by osmotic dehydration with additional drying in heart. Were initially defined the best conditions of pre-osmotic dehydration (temperature, immersion time, type of osmotic solution) based on the results of humidity loss, solid gain, weight reduction and efficiency ratio of predehydrated carrots slices. The osmotic solutions used were composed by NaCl (10%) and sucrose (50 ° Brix) named DO1 and sucrose (50 ° Brix) called DO2. Was made experiment of pre-osmotic dehydration of carrot slices in two temperature levels, with complementary drying in heart with air circulation at 70 º C. Sensory analysis was performed and the study of slices dehydration osmotically and the slices without osmotic treatment. The best results were obtained with the solution DO1 60°C with immersion time of 60 min. The drying of carrot slices presented period of constant rate and decreasing rate. The osmotic pre-treatment reduced the initial humidity of carrot slices, reducing the time to the product to reach the same humidity content. Fick's model, considering the shrinkage, and the Page s model, adapt satisfactorily to experimental datas, allowing the determination of effective diffusion coefficients, consistent with the references. The results of sensory analysis of dry product, showed greater acceptance of sliced carrots with osmotic treatment

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Biosurfactants are amphiphilic molecules synthesized by microorganisms such as bacteria, yeast or filamented fungi cultivated in various carbon sources among sucrose and hydrocarbons. These molecules are composed by a hydrophilic and hydrophobic part. They operate mostly at interfaces of fluids of different polarities. Because of this characteristic, they are potentially employed in numerous industries, such as the textile, medical, cosmetics, food and mainly in the petrochemical ones. Therefore industry has interest in developing new biosurfactant production processes in high scale, in order to become them economically competitive when compared to synthetic biosurfactants. This work aims to evaluate the biosurfactant production applying a non-conventional substrate sugar cane molasses proceeding from the sugar industry thus reducing the production costs. The strain identified as AP029/GLIIA, isolated from oil wells in Rio Grande do Norte state and used in these experiments belongs to the culture collection of Antibiotics Department of UFPE. The fermentation were carried out using different conditions according to a factorial planning 24 with duplicate at center point, in which the studied factors were molasse concentration, nitrate concentration, agitation and aeration ratio. The experiments were performed in a shaker at 38ºC of temperature. Samples were withdrawn in regular periods of time of up to 72 hours of fermentation in order to analyze substrate consumption, cellular concentration, superficial tension, critical micelle dilution (CMD-1 e CMD-2) as well as extracelullar protein production. The results showed a production of 3,480 g/L of biomass, a reduction of 41% on superficial tension, 67% of substrate consumption and 0,2805 g/L of extracellular protein

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recently, global demand for ethanol fuel has expanded very rapidly, and this should further increase in the near future, almost all ethanol fuel is produced by fermentation of sucrose or glucose in Brazil and produced by corn in the USA, but these raw materials will not be enough to satisfy international demand. The aim of this work was studied the ethanol production from cashew apple juice. A commercial strain of Saccharomyces cerevisiae was used for the production of ethanol by fermentation of cashew apple juice. Growth kinetics and ethanol productivity were calculated for batch fermentation with different initial sugar (glucose + fructose) concentration (from 24.4 to 103.1 g.L-1). Maximal ethanol, cell and glycerol concentrations (44.4 g.L-1, 17.17 g.L-1, 6.4 g.L-1, respectively) were obtained when 103.1 g.L-1 of initial sugar concentration were used, respectively. Ethanol yield (YP/S) was calculated as 0.49 g (g glucose + fructose)-1. Pretreatment of cashew apple bagasse (CAB) with dilute sulfuric acid was investigated and evaluated some factors such as sulfuric acid concentration, solid concentration and time of pretreatment at 121°C. The maximum glucose yield (162.9 mg/gCAB) was obtained by the hydrolysis with H2SO4 0.6 mol.L-1 at 121°C for 15 min. Hydrolysate, containing 16 ± 2.0 g.L-1 of glucose, was used as fermentation medium for ethanol production by S. cerevisiae and obtained a ethanol concentration of 10.0 g.L-1 after 4 with a yield and productivity of 0.48 g (g glucose)-1 and 1.43 g.L-1.h-1, respectively. The enzymatic hydrolysis of cashew apple bagasse treated with diluted acid (CAB-H) and alkali (CAB-OH) was studied and to evaluate its fermentation to ethanol using S. cerevisiae. Glucose conversion of 82 ± 2 mg per g CAB-H and 730 ± 20 mg per g CAB-OH was obtained when was used 2% (w/v) of solid and loading enzymatic of 30 FPU/g bagasse at 45 °C. Ethanol concentration and productivity was achieved of 20.0 ± 0.2 g.L-1 and 3.33 g.L-1.h-1, respectively when using CAB-OH hydrolyzate (initial glucose concentration of 52.4 g.L-1). For CAB-H hydrolyzate (initial glucose concentration of 17.4 g.L-1), ethanol concentration and productivity was 8.2 ± 0.1 g.L-1 and 2.7 g.L-1.h-1, respectively. Hydrolyzates fermentation resulted in an ethanol yield of 0.38 g/g glucose and 0.47 g/g glucose, with pretreated CABOH and CAB-H, respectively. The potential of cashew apple bagasse as a source of sugars for ethanol production by Kluyveromyces marxianus CE025 was evaluated too in this work. First, the yeast CE025 was preliminary cultivated in a synthetic medium containing glucose and xylose. Results showed that it was able to produce ethanol and xylitol at pH 4.5. Next, cashew apple bagasse hydrolysate (CABH) was prepared by a diluted sulfuric acid pre-treatment. The fermentation of CABH was conducted at pH 4.5 in a batch-reactor, and only ethanol was produced by K. marxianus CE025. The influence of the temperature in the kinetic parameters was evaluated and best results of ethanol production (12.36 ± 0.06 g.L-1) was achieved at 30 ºC, which is also the optimum temperature for the formation of biomass and the ethanol with a volumetric production rate of 0.25 ± 0.01 g.L-1.h-1 and an ethanol yield of 0.42 ± 0.01 g/g glucose. The results of this study point out the potential of the cashew apple bagasse hydrolysate as a new source of sugars to produce ethanol by S. cerevisiae and K. marxianus CE025. With these results, conclude that the use of cashew apple juice and cashew apple bagasse as substrate for ethanol production will bring economic benefits to the process, because it is a low cost substrate and also solve a disposal problem, adding value to the chain and cashew nut production

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the behavioral paradigm of discriminative avoidance task, both short and long-term memories have been extensively investigated with behavioral and pharmacological approaches. The aim of the present study was to evaluate, using the abovementioned model, the hippocampal expression of zif-268 - a calcium-dependent immediate early gene involved with synaptic plasticity process - throughout several steps of memory formation, such as acquisition, evocation and extiction. The behavioral apparatus consisted of a modified elevaated plus-maze, with their enclosed arms disposed in "L". A pre-exposure to the maze was made with the animal using all arms enclosed, for 30 minutes, followed by training and test, during 10 minutes each. The between sections interval was 24h. During training, aversive stimuli (bright light and loud noise) were actived whenever the animals entered one of the enclosed armas (aversive arm). Memory acquisiton, retention and extinction were evaluated by the percentage of the total time spent exploring the aversive arm. The parameters evaluated (time spent in the arms and total distance traveled) were estimated with an animal tracking software (Anymaze, Stoelting, USA). Learning during training was estimated by the decrease of the time spent exploring the aversive arm. One hour after the beginning of each section, animals were anaesthetized with sodium-thiopental (i.p.) and perfused with 0.9% heparinized saline solution followed by 4% paraformaldehyde. Brains were cryoprotected with 20% sucrose, separeted in three blocks and frozen. The middle block, containing the hippocampus, was sectioned at 20 micro meters in the coronal plane and the resutant sections were submitted to zif-268 immunohistochemistry. Our results show an increased expression of zif-268 in the dentate gyrus (DG) during the evocation and extinction stages. There is a distinct participation of the DG during the memory evocation, but not during its acquisition. Inaddition, all hippocampal regions (CA1, CA3 and DG) presented an increased zif-268 expression during the process of extinction.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Enzymes have been widely used in biosynthesis/transformation of organic compounds in substitution the classic synthetic methods. This work is the first writing in literature of enzymatic synthesis for attainment the biossurfactants, the use glucose sucrose, ricinoleic acid e castor oil as substratum, and as biocatalyst, used immobilized lipase Thermomyces lanuginose, Rhizomucor miehei and the Candida antarctica lipase B; alkaline protease and neutral protease from Bacillus subtillis and yeast Saccharomyces cerevisiaeI. The analysis of HPLC (high performance liquid chromatography) showed that highest conversions were reached of used the alkaline protease from Bacillus subtillis. Laboratory tests, to evaluate the applicability, indicated that the produced biosurfactantes had good stability in presence of salts (NaCl) and temperature (55 e 25°C), they are effective in the reduction of the superficial tension and contac angle, but they have little foaming capacity, when compared with traditional detergents. These results suggest that the prepared surfactants have potential application as wetting agent and perforation fluid stabilizer

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sweeteners provide a pleasant sensation of sweetness that helps the sensory quality of the human diet, can be divided into natural sweeteners such as fructose, galactose, glucose, lactose and sucrose, and articial sweeteners such as aspartame, cyclamate and saccharin. This work aimed to study the thermal stability of natural and artificial sweeteners in atmospheres of nitrogen and syntetic air using thermogravimetry (TG), derivative thermogravimetry (DTG), Differential Thermal Analysis (DTA) and Differential Scanning Calorimetry (DSC). Among the natural sweeteners analyzed showed higher thermal stability for the lactose and sucrose, which showed initial decomposition temperatures near 220 ° C, taking advantage of the lactose has a higher melting point (213 ° C) compared to sucrose (191 ° C). The lower thermal stability was observed for fructose, it has the lowest melting point (122 °C) and the lower initial decomposition temperature (170 °C). Of the artificial sweeteners studied showed higher thermal stability for sodium saccharin, which had the highest melting point (364 ° C) as well as the largest initial decomposition temperature (466 ° C under nitrogen and 435 ° C in air). The lower thermal stability was observed for aspartame, which showed lower initial decomposition temperature (158 ° C under nitrogen and 170 ° C under air). For commercial sweeteners showed higher thermal stability for the sweeteners L and C, which showed initial temperature of thermal decomposition near 220 ° C and melting points near 215 ° C. The lower thermal stability was observed for the sweetener P, which showed initial decomposition temperature at 160 ° C and melting point of 130 °C. Sweeteners B, D, E, I, J, N and O had low thermal stability, with the initial temperature of decomposition starts near 160 °C, probably due to the presence of aspartame, even if they have as the main constituent of the lactose, wich is the most stable of natural sweeteners. According to the results we could also realize that all commercial sweeteners are in its composition by at least a natural sweeteners and are always found in large proportions, and lactose is the main constituent of 60% of the total recorded

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Arbuscular mycorrhizal fungi (AMF) are obligatory symbiotic organisms that associate with roots of a large number of plant taxa, and are found in all terrestrial ecosystems. These fungi promote greater tolerance to environmental stresses to associated plant, favoring the establishment of plant communities, especially where soil fertility is a limiting factor, as in the Caatinga, an exclusively Brazilian domain that has been focus of research due to its great biodiversity that can help clarify the history of vegetation in South America. Because of the ecological importance of AMF, the limited number of jobs and the potential diversity of the Caatinga, this work aims to inventory the diversity and determine AMF communities in areas with different faces occurrent in FLONA Araripe, Ceará (CE). The sample collection occurred in four periods at the beginning and end of the dry season (August and December 2011, respectively) and rainy (February and June 2012, respectively) in an area of marsh and woodland altitude of the Araripe, Crato, CE. The glomerosporos were extracted by wet sieving and centrifugation in water and sucrose (50%) mounted between slide and coverslip using PVLG and PVLG + Reagent Melzer. In total, we found 46 species of AMF distributed in eight families and 16 genera: Acaulospora (6), Ambispora (1), Cetraspora (2), Dentiscutata (5), Fuscutata (2), Gigaspora (6), Glomus (13) Intraornatospora (1), Kuklospora (1), Orbispora (1), Paradentiscutata (1), Quatunica (1), Racocetra (1), Scutellospora (2), Septoglomus (2) and a new genus. analysis showed that ecological each area of study has its own seasonal dynamics, with an area of woodland with a greater diversity of species throughout the year, while the marsh elevation showed greater variation in species found among the collection periods, showing that vegetation and rainfall has strong influence on the seasonal dynamics of AMF, as well as the availability of nutrients and soil pH so